1.Labelme

Labelmeis a graphical image annotation tool inspired byhttp://labelme.csail.mit.edu.Itis written in Python and usesQtfor its graphical interface.

Convert to VOC dataset:RGB infos:

2.ImageTagger

This is a collaborative online tool for labeling image data.

If you are participating in RoboCup, you should not install your own instance but rather use the one provided by the Hamburg Bit-Bots (https://imagetagger.bit-bots.de). This enables you to use already labeled images from other teams and to share your own.

For a short overview of the functions please have a look at the following poster:https://robocup.informatik.uni-hamburg.de/wp-content/uploads/2017/11/imagetagger-poster.pdf

Used dependencies

The ImageTagger relies on the following plugins, libraries and frameworks:

主要的缺点:

(1)导出格式只有自定义的txt格式,不支持Pascal Voc等主流格式。

(2)Image Segmentation方面的标注不是太灵活,而且不支持Mask image的导出。

3.Labelbox

The most versatile data labeling platform for training expert AI. https://www.labelbox.com

支持导出Mask image:

主要的缺点:

(1)代码发布到Cloud上,部署比较麻烦些

(2)数据整理也比较麻烦(segmentation mask image是通过的链接的方式放置在json/xml文件中)

4.Colabeler

主要的缺点:

(1)不支持segmentation mask的导出

(2)没有源代码,不易扩展

results matching ""

    No results matching ""