1.Labelme
Labelmeis a graphical image annotation tool inspired byhttp://labelme.csail.mit.edu.Itis written in Python and usesQtfor its graphical interface.
Convert to VOC dataset:RGB infos:
2.ImageTagger
This is a collaborative online tool for labeling image data.
If you are participating in RoboCup, you should not install your own instance but rather use the one provided by the Hamburg Bit-Bots (https://imagetagger.bit-bots.de). This enables you to use already labeled images from other teams and to share your own.
For a short overview of the functions please have a look at the following poster:https://robocup.informatik.uni-hamburg.de/wp-content/uploads/2017/11/imagetagger-poster.pdf
Used dependencies
The ImageTagger relies on the following plugins, libraries and frameworks:
- Bootstrap
- Django
- Django REST Framework
- django-registration
- django-widget-tweaks
- imgAreaSelect
- jCanvas
- jQuery
- jQuery-Autocomplete
- jQuery-File-Upload
- Pillow
- PostgreSQL
主要的缺点:
(1)导出格式只有自定义的txt格式,不支持Pascal Voc等主流格式。
(2)Image Segmentation方面的标注不是太灵活,而且不支持Mask image的导出。
3.Labelbox
The most versatile data labeling platform for training expert AI. https://www.labelbox.com
支持导出Mask image:
主要的缺点:
(1)代码发布到Cloud上,部署比较麻烦些
(2)数据整理也比较麻烦(segmentation mask image是通过的链接的方式放置在json/xml文件中)
4.Colabeler
主要的缺点:
(1)不支持segmentation mask的导出
(2)没有源代码,不易扩展